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a b s t r a c t

A new class of nanocomposite functional paint sensor is proposed, whereby an epoxy resin is mixed
with carbon black nanoparticles to make the sensor sensitive to mechanical excitations. A compre-
hensive analysis is presented to understand the underlying phenomena governing the operation of
this class of paint sensors. The analysis includes developing an electromechanical model which treats
the sensor system as a lumped-parameter system. The Debye and the Cole–Cole equations are uti-
lized to model the behavior of the nanocomposite paint. The sensor equations are integrated with
a simple amplifier circuit in order to predict the current and voltage developed by the paint sen-
sor. Several experiments are performed to assess the validity of the proposed models of the paint
sensor system. First, impedance spectroscopy is employed to verify the validity of the Debye and
Cole–Cole models and to obtain the sensor electrical parameters. Then, experiments are carried out
to validate the piezoresistance model. Finally, the predictions of the electromechanical model are
experimentally verified by examining the dynamic response of the sensor system under cyclic load-

ing.

The ultimate goal of this study is to demonstrate the feasibility of the proposed nanocomposite
functional paint as a sensor for monitoring the vibration, acoustics, and health of basic structural sys-

tems.

. Introduction

Paints are commonly applied as films on structures surfaces for
roviding protective and decorative functions. When the paint pos-
esses a sensing capability, the paint becomes functional or smart.
ecently, several attempts have resulted in the development of
mart paints which can be used as sensors for vibration, noise, and
ealth monitoring applications. The currently available functional
aints are complex and very expensive for practical applications.
or example, smart composite paints which are made of piezoelec-
ric powder immersed in epoxy resin must be coated with layers
f electrodes and then poled using very high voltage to impart
he sensing capability to the paint [1–3]. Such a complex prepara-
ion processes make this type of paint very expensive. Furthermore,
xpensive charge amplifiers are needed to monitor the capacitive

utput signals of the smart paint sensor. Alternatively, the pressure
ensitive smart paints which modulate the light intensity through
repeatable chemical interaction of the sensing layer with atmo-

pheric oxygen require the use of an expensive photo-detector such
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as a CCD camera or photomultiplier tube for interrogation of the
paint [4].

Carbon black (CB) composite is another class of functional mate-
rial that finds wide applications, e.g., in deformation sensing. The
composite consists basically of electrically conductive CB aggre-
gates embedded in a polymer matrix. The composite conductivity
noticeably changes with the applied mechanical deformation.

Extensive research effort has been put forth to studying the per-
colation theory which is often used to describe the relationship
between CB contents and the direct current (DC) conductivity [5].
However, investigation of the sensing ability of CB composites is
focused on the detection of quasi-static effect. For example, the
work of Shevchenko et al. [6] focused on graphite filled polypropy-
lene composites, which possess smart properties, such as a positive
temperature coefficient of resistance and strain dependent conduc-
tivity. Along a similar direction, Kimura et al. [7] experimentally
illustrated the linear relationship between the logarithms of the
resistance and elongation. Furthermore, they developed a model
based on the tunneling junction model. Flandin et al. [8] evaluated

the DC electrical and mechanical properties of composites com-
posed of conductive fillers impeded into elastomer matrices. Zhang
et al. [9] presented a systematic work on the piezoresistance effects
of electrically conducting composites which are subject to uni-axial
pressure. The investigation experimentally verified the theoretical

http://www.sciencedirect.com/science/journal/09244247
http://www.elsevier.com/locate/sna
mailto:odraihem@ksu.edu.sa
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transducers [17], piezoelectric devices [18], ionic polymer [19], and
electroacoustic devices [20].

In what follows, the equivalent lumped-parameter approach
will be used to obtain the paint sensor equations.
34 O.J. Aldraihem et al. / Sensors a

odel for the piezoresistance. In another work, Zhang et al. [10]
xtended their former investigation to study the time dependence
f the piezoresistance. Knite et al. [11] proposed the use of car-
on black nanocomposites as tensile strain and pressures sensor.
he investigation included experimental results and a theoretical
odel based on that of Zhang et al. [9]. In a recent work, Wang et

l. [12] studied the conduction mechanism in CB composites using
mpedance spectroscopy. Three equivalent-circuit models are pro-
osed for the various regions of percolation theory curve. Another
roup of investigators [13,14] studied the piezoresistive behaviors
f graphite composites under static pressures. Das et al. [15] is
ocused on the variation of the resistivity of CB and short carbon
ber composites with the degree of strain at constant strain rate.

In this work, a nanocomposite paint is proposed whereby an
poxy resin is mixed with carbon black nanoparticles to make it
ct as a functional composite. The paint sensor is very simple and
apable of monitoring vibration and noise down to a quasi-static
requency of ≈0 Hz. Accordingly, simple electrical circuits can be
sed to measure the changes in the current and voltage developed
y the paint sensor.

It is also important to mention that the proposed paint can be
asily applied to structures of complex shapes and can act as a
ontinuously distributed sensor over very large areas of structural
urfaces. The proposed paint sensor can be used in numerous appli-
ations ranging from monitoring infrastructures, payload fairings of
aunching vehicles, flexible space structures, as well as many other
ritical structures that are only limited by our imagination.

In the present study, the objective is to develop a comprehensive
odel of the paint sensor system for vibration, noise, and health
onitoring applications. A lumped-parameter approach is used to

btain the paint sensor equations. Furthermore, impedance equa-
ions are presented to estimate the electrical parameters of the
aint sensor. Hamilton’s principle for electromechanical systems is
mployed to derive the dynamic equations of the sensor system. The
eveloped models are verified experimentally by examination of
he impedance spectrum, piezoresistance, and dynamic response.

The paper is organized in four sections. Section 1 briefly summa-
izes the literature review. In Section 2, the equivalent circuit model
f the functional paint is developed using the Debye and Cole–Cole
quations. Then, estimates of the paint electrical components are
btained from the impedance equations. An electromechanical
odel is derived for the paint sensor system using the Hamilton’s

rinciple. The model is based on an equivalent circuit representa-
ion which treats the real sensor system as a lumped-parameter
ystem. The sensor system equations are integrated with a sim-
le electrical circuit to enable the measurement of the current
nd voltage developed by the functional paint sensor. Section 3
resents experimental validations of the predictions of the devel-
ped models and provides assessments of the static and dynamic
erformance characteristics of the paint sensor system. Section 4
ummarizes the major conclusions and recommendations of the
resent study.

. Model development

.1. Nanoparticle paint sensor

The proposed paint sensor is a conductive composite, as shown
n Fig. 1, whereby a polymer resin is mixed with CB aggregates to

ake it electrically conducting and functional.
The geometric scale of the aggregate can, in general, range
rom nanoscale to microscale. Furthermore, the composite sensor
s assumed to be homogeneous on the macroscale.

To facilitate modeling formulation, the real microstructure of
he sensor is simplified as illustrated in Fig. 2. The primary aggre-
ates consist of many CB nanoparticles, where each CB aggregate
Fig. 1. Sample of a paint sensor.

is assumed to form a continuum phase of a spherical shape. More-
over, each CB aggregate possesses high-structure of high electrical
conductivity. The weight fraction loading of the carbon black phase
is assumed to be within the percolation region.

The principle of sensing can be best understood by consider-
ing the schematic circuit shown in Fig. 2. This circuit enables the
measurement of the current and/or voltage developed by the paint
sensor. A voltage source, uin, along with a series resistor, R0, is used
to bias the sensor. When the sensor is subject to external vibration
or acoustic excitations, its electrical properties are altered and so are
the current and voltage of the bias resistor. The resulting changes are
proportional to the external excitations. The representation of Fig. 2
illustrates the basic configuration of the sensor measurement sys-
tem that can be used as load (force, pressure) and/or deformation
(displacement, strain, velocity, etc.) sensor.

2.2. Equivalent lumped-parameter models

The paint sensor is basically an electromechanical transducer
which can be described by the constitutive (characteristic) equa-
tions of the sensor and the equations of motion of sensor structure
along with the associated boundary conditions. The equivalent
lumped-parameter approach can be used to replace the system
governing equations with a lumped-parameter electrical circuit
whose elements physically represent the sensor electromechani-
cal properties such as the capacitance, resistance, mass, stiffness,
and damping [16]. The equivalent circuit method is attractive in
the sense that the sensor system can be cast in a single represen-
tation. Furthermore, the equivalent circuit method is often used to
model and analyze coupled domain devices including electrostatic
Fig. 2. Schematic circuit of the sensor.
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as measure for the force or velocity.
When the sensor is electrically and mechanically unloaded, the

distance between the two electrodes is x0. But, when the sensor
is subjected to only a DC bias voltage, the bias voltage generates
an attractive force between the electrodes and an equilibrium state
Fig. 3. Equivalent electrical circuit of the ideal, Debye, model.

.2.1. Ideal components, Debye model
The simplest equivalent circuit mimicking the impedance of

lectrically conducting composites can be modeled by a Debye
quation. The equivalent circuit of this model consists of a resis-
ance, Ra, connected in series with parallel Rg–Cg elements [12],
s shown in Fig. 3. The resistance Ra is the overall carbon black
ggregates resistance of the composite. The gaps between the car-
on black aggregates are equivalent to resistor–capacitor elements.
hese parallel elements Rg and Cg are the overall gaps resistance
nd capacitance of the composite, respectively. The Ra, Rg and Cg

omponents are considered ideal, that is frequency independent,
nd are estimated from the impedance spectrum of the sensor. The
requency dependent impedance of this composite sensor is

Debye = Ra + Rg

1 + jω�
(1)

ith

= RgCg, j =
√

−1 (2)

here ω(=2�f) is the angular frequency and � is the characteristic
ime of the equivalent circuit. The real and imaginary parts of the
ebye impedance (1) can be extracted, respectively, as

Z ′
Debye = Ra + Rg

1 + (ω�)2

Z ′′
Debye = − ωRg�

1 + (ω�)2

(3)

he ideal components Ra, Rg and Cg can be estimated from the values
f Z ′

Debye and Z ′′
Debye. At low frequency, the value of the real part is

a + Rg, however, this value reduces to Ra at very high frequency.
hen the frequency reaches (1/�), the imaginary part attains a
aximum value of Z ′′

max = Z ′′
Debye(ωmax = (1/�)) = −(Rg/2). At this

requency, ωmax, the capacitance of the composite can be calculated
ia Cg = (1/(Rgωmax)).

.2.2. Frequency dependent components, Cole–Cole model
The Debye model presented in the previous section is useful

n describing a composite sensor with impedance possessing fre-
uency independent parameters. When the matrix of the composite
ensor is made of polymer, the impedance parameters become fre-
uency dependent. For such a case, a good representation can be
btained by the Cole–Cole empirical equation:

C–C = Ra + Rg

1 + (jω�)˛ (4)

here ˛ is a dimensionless positive parameter with values in

he range, 1 ≥ ˛ ≥ 0. Using De Moivre identity, j˛ = cos(˛�/2) + j
in(˛�/2), the impedance (4) is expanded as

C–C = Ra + Rg

1+ω˛�˛ cos(˛�/2) + jω((ω˛/ω�˛) sin(˛�/2))
(5)
tuators A 149 (2009) 233–240 235

Letting � = R1/˛
g Cg , the impedance (5) is reduced to

ZC–C = Ra + 1
(1/Rg) + (1/rω) + jωcω

(6)

with frequency dependent resistor and capacitor given by

rω = 1
ω˛C˛

g cos(˛�/2)

cω = ω˛

ω
C˛

g sin(˛�/2)

(7)

where Ra, Rg and Cg are frequency independent elements. The real
and imaginary parts take form similar to those of the Debye model
(3) and are given, respectively, as

Z ′
C–C = Ra + Re

1 + (ω�w)2

Z ′′
C–C = − ωRe�ω

1 + (ω�w)2

(8)

where

�ω = Recω, Re = Rgrω

Rg + rω
(9)

The equivalent circuit of the Cole–Cole impedance (6) can be rep-
resented graphically, as shown in Fig. 4. In Cole–Cole model, four
parameters should be estimated; Ra, Rg, Cg and ˛. The dimensionless
positive number ˛ is obtained from fitting the data. The compo-
nents Ra, Rg and Cg can be estimated from the values of Z ′

C–C and
Z ′′

C–C. For ˛ = 1, it should be clear that the resistor term in (6), 1/rω ,
vanishes and the capacitor, cω , becomes Cg leading to the Debye
model.

2.3. Governing equations of the sensor system

The sensor system depicted in Fig. 2 is modeled as shown in
Fig. 5. This model is a lumped-parameter model which treats the
mechanical domain as a single degree of freedom system. The cir-
cuits shown in Figs. 3 and 4 are adopted for the sensor electrical
domain. Depending on the model used, the sensor impedance, Zs,
can be taken from the Debye (1) or the Cole–Cole (6) equation.
The mechanical elements are the equivalent mass, m, the equiv-
alent stiffness, K, and the equivalent damping coefficient, b. When
the sensor is disturbed by a force F(t), the mass is displaced by an
amount x(t). The mechanical disturbance is converted into elec-
trical current signal which flows in part through the resistor, R0,
thereby changing the output voltage ū(t). This voltage is considered
Fig. 4. Equivalent electrical circuit of the Cole–Cole model.
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Fig. 5. Lumped-parameter representation of the paint sensor system.

s attained. At the equilibrium state, the two electrodes are sepa-
ated by a distance xdc, and the sensor is deformed by a distance
= x0 − xdc. The equilibrium distance xdc is obtained by balancing

he sensor stiffness force with the electrostatic force of the dc bias.
his is derived as

d = Q 2
dc

2εA
⇒ xdc = x0 − Q 2

dc

2KεA
(10)

here Qdc denotes the charge in the sensor electrodes due to dc bias,
denotes the effective permittivity of the sensor, and A denotes the
rea of the electrodes.

Hamilton’s principle for electromechanical systems will be used
o derive the governing equations of the sensor system. In the
nterest of simplicity, the derivation will only consider the Debye
quivalent circuit of the sensor as shown in Fig. 6. Hamilton’s
rinciple yields the following Lagrange’s equation for the elec-
romechanical systems [21].

d

dt

(
∂L

∂żi

)
+ ∂D

∂żi
− ∂L

∂zi
= Pi

and
d

dt

(
∂L

∂ ˙̄Q k

)
+ ∂D

∂ ˙̄Q k

− ∂L

∂Q̄k

= Ek

(11)

ith the Lagrangian given by

= T∗ − V − We (12)

he Lagrangian (12) accounts for all the conservative elements in
he system and

n∑ l∑

Wnc =

i=1

Piızi +
k=1

EkıQ̄k (13)

s the virtual work of all non-conservative elements. Where Pi
ncludes all the non-conservative mechanical loads which are not

Fig. 6. Electrical circuit of the sensor system.
tuators A 149 (2009) 233–240

accounted for in the dissipation function, and Ek denotes the non-
conservative voltage.

With reference to Fig. 6, the electrical charges in the sensor sys-
tem are given by

Q̄1(t) = Q1dc + Q1(t)

and Q̄2(t) = Q2dc + Q2(t)
(14)

where Qidc (i = 1, 2) is the charge due to a DC bias and Qi(t) is the
charge created by the excitation.

For Debye model, the various energy contributions to the
Lagrangian are

T∗ = 1
2

mẋ2,

V = 1
2

K(x + d)2,

and We = 1
2Cg

Q̄ 2
2 .

(15)

where T* is the kinetic energy, V is the potential energy, and We is
the electrical energy of the sensor system.

With reference to Figs. 5 and 6, the dissipation energy function
is given as

D = 1
2

(
bẋ2 + (R0 + Ra) ˙̄Q

2

1 + Rg

(
˙̄Q 1 − ˙̄Q 2

)2
)

(16)

and

ıWnc = F(t)ıx + uinıQ̄1 (17)

The capacitance of the overall gap, Cg, varies with displacement of
the movable electrode about the equilibrium position according to

Cg = εA

xdc − x(t)
(18)

Furthermore, the overall gaps resistance Rg varies with the sensor
deformation according to [9]

Rg = Rgdc

(
1 − x(t)

xdc

)
e−�s0(x(t)/xdc) (19)

with

� = 4�

h

√
2meϕ (20)

s0 = D

(
3

√
�

6	
− 1

)
(21)

where Rgdc is the overall gap resistance at equilibrium, D is the CB
aggregate diameter, 	 is the CB volume fraction, h is the Plank con-
stant, me is the electron mass, and ϕ is the height of the potential
barrier between adjacent carbon black aggregates.

Using Eqs. (14)–(18) in the Lagrange’s Eq. (11) and carrying out
some mathematical manipulations yields the governing equations.

mẍ + bẋ + Kx − Q2dc

εA
Q2 = F,

(R0 + Ra)Q̇1 − Rg(Q̇2 − Q̇1) = 0,

and Rg(Q̇2 − Q̇1) + xdc

εA
Q2 − Q2dc

εA
x = 0.

(22)

The above Eq. (22) represents the nonlinear dynamic behavior of
the sensor system. The nonlinearity is seen in the terms containing
Rg where x(t) is embedded. The displacement, x(t), is coupled with

the electrical charge Q2(t) via the electromechanical coupling factor
(Q2dc/εA). Furthermore, the displacement, x(t) which is hidden in
the Rg terms, can affect the electrical response of the system.

In general, the output voltage drop in the resistor R0 and the
voltage across the paint sensor are available for measurement. Since
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Fig. 7. Real Z′ and imaginary Z′′ impedance spectrum.

Table 1
Estimated electrical parameters of equivalent circuits (mechanically unloaded).

Model Rg () Ra () Cg (×10−11 F) ˛

Debye
50 mV excitation 500 56 54.332 –

To obtain quantitative information from the sensor model pre-
sented in Section 2.3, one must first determine values for several
electrical parameters. Experimental impedance spectroscopy is
employed in this work to verify the validity of the Debye and
O.J. Aldraihem et al. / Sensors a

hey differ only by the excitation voltage, which is known uin, it is
ufficient to consider only one of them. The voltage drop in the
esistor R0 is given as

¯ = R0
˙̄Q 1 (23a)

r

¯ = udc + u(t) = R0Q̇1dc + R0Q̇1 (23b)

he first term in (23b) is the voltage drop in the resistor at equi-
ibrium, while the second term is due to the mechanical excitation.
olving the system (22) for a given excitation F(t) provides solu-
ions for x(t), Q1(t), Q2(t) and their derivatives. This solution set can
eadily be used to obtain u(t) and ū.

.4. Mechanical elements

The mechanical elements of the composite sensor are repre-
ented in Fig. 5 by K, m, and b. For an axial bar, an expression for
he mechanical equivalent stiffness can be derived by considering
he quasi-static relationship between applied force and the pro-
uced deformation. For small deformations, the axial load and the
eformation are related through

= E′A
x0

x (24)

ith [22]

′ = E′
p

(
1 + 2.5
 + 14.1
2

)
(25)

here E′ is the sensor elastic (storage) modulus (the elastic modulus
f the composite sensor is complex due to the polymer matrix),
′
p is the elastic (storage) modulus of the polymer matrix, and 

s the volume fraction of the CB filler.Eq. (24) leads to the sensor
quivalent stiffness

= E′A
x0

(26)

Similarly, the equivalent mass of the sensor is obtained for
omposite bar. This is achieved by combining the quasi-static bar
tiffness with the bar’s natural frequency. For axial vibration, the
undamental frequency of a fixed-free bar is

= �

x0

√
E′

�
(27)

here � is the composite sensor density. This density can be esti-
ated by using the rule of mixture.
For a one degree of freedom system the relationship

=
√

K

m
(28)

an be used to estimate the equivalent mass of the paint sensor.
olving Eqs. (26)–(28) for the equivalent mass yields

= 4x0

�2
�A (29)

Finally, the damping term is derived using the damping the
omplex modulus E = E′ + jE′′ of the composite sensor and the rela-
ionship [23]

= �
K

b
(30)
ith the lost factor

= E′′

E′ (31)

here E′′ denotes the loss modulus.
Cole–Cole
50 mV excitation 540 20 3.4332 0.645
3 V excitation 485 15 3.461 0.655

The equivalent damping coefficient is obtained by solving Eqs.
(26), (27) and (30).

b = 2
�

�A
√

�E′ (32)

It should be mentioned that Eq. (25) is also applicable to determine
the loss modulus (E′′, E′′

p instead of E′ and E′
p, respectively).

3. Models verification

3.1. Impedance spectrum
Fig. 8. Complex impedance spectrum.
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results for all frequencies. Furthermore, Fig. 7 shows that the imag-
ig. 9. Complex spectrum of a sensor biased by a signal with amplitude of 3 V.

ole–Cole models and to obtain the electrical parameters. All of the
xperiments were performed on a paint sensor which consists of
0 wt% CB aggregates embedded in a polyurethane matrix. A Tissue
earor mixer (Model 985370, BIOSPEC Products, Inc., Bartlesville,
K (http://www.biospec.com) is used to ensure the homogeneity
f the paint.

The CB used was acetylene black, from Alfa Aesar Company, with
n average particle size 42-nm, a surface area 75 m2/g, a density
.26 g/cm3 and a bulk density 94.5–102.5 kg/m3 [24]. The matrix
sed was 60A polyether-based urethane, from Forsch Polymer
orp., with a density 1.08 g/cm3 and an elastic modulus 2–3.8 MPa
25]. The loss factor of the urethane is 0.12, which was obtained
xperimentally. The relative dielectric constant of the urethane is
.0–8.8 [26].

Samples were fabricated by hand mixing the urethane and CB
nd pouring the mixture in a metal mold for one day. The samples
ere then cut into disk shape, coated with surface electrodes made

f conductive silver paint, and connected with leads. The samples
ere 24.6-mm diameter and 0.942-mm average thickness.

The impedance spectra were measured at room temperature

sing impedance analyzer, Hewlett Packard 4192A LF, over the fre-
uency range from 5 Hz to 4 MHz. The analyzer was set on a series
ode, and the samples were excited by a signal with amplitude of

0 mV.

Fig. 10. Measured and predicted relative resistance change.
Fig. 11. Experimental set-up for the dynamic response.

Fig. 7 shows the real Z′ and imaginary Z′′ impedance spectrum in
the frequency range from 5 to 4 × 106 Hz. The figure contains plots
from the experiments, Debye and Cole–Cole models. The Debye
curves are calculated using Eq. (3) and values of Ra, Rg and Cg that
best fit the experimental data and as described in Section 2.2.1.
Similarly, the Cole–Cole spectra are determined using Eq. (8) and
values of Ra, Rg, Cg and ˛ that best match the experiments and
as described in Section 2.2.2. The evaluated values of the param-
eters are given in Table 1. When compared to the experimental
results, it is observed that the Debye model provides good pre-
dictions for frequency range less than 1 kHz. On the other hand,
the Cole–Cole predictions agree quite well with the experimental
inary impedance Z′′ is close to zero at frequency below one kHz.
This indicates that the current bypasses Cg and flows only thru Rg

branch.

Fig. 12. The applied dynamic stress.

http://www.biospec.com/
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Fig. 13. Predicted displacement x(t) of the movable electrode.

To further confirm the validity of the models, the results are plot-
ed in the complex impedance spectrum as shown in Fig. 8. Here
gain the Cole–Cole results agree well with those of the experi-
ents, while the Debye curve matches the experimental data only

t low and very high frequencies.
Since the proposed sensor system operates under the influence

f an external DC excitation, the effect of a DC bias on the impedance
pectrum is also investigated. Fig. 9 shows the complex spectrum
f a paint sensor biased by a signal with amplitude of 3 V. At low
requency, it can be seen that the presence of a bias voltage reduces
he values of Ra and Rg when compared with those of an unbiased
ensor. The bias voltage creates attractive force between adjacent
ggregates which decreases the separation distance and the sensor
esistance. At very high frequency, the bias voltage has no effect on
he impedance.

.2. Piezoresistance

The paint sensor described in Section 3.1 is used here to verify
he piezoresistance model (19). The sensor is subjected to com-

ressive stresses created by weights, and the sensor resistance was
easured by a digital multimeter. Fig. 10 shows the measured and

he predicted relative resistance change as function of the applied
tress. Clearly, the predicted results are in good agreement with

Fig. 14. Predicted and experimental voltages drop in the sensor.
tuators A 149 (2009) 233–240 239

the experiments verifying the validity of the model (19). At small
applied stress, the results show that the relative resistance varies
almost linearly with the compression stress.

3.3. Dynamic response

The dynamic model (22) of the paint sensor system is solved
numerically and verified experimentally. The experimental mea-
surements are performed using the test set-up shown in Fig. 11.
The paint sensor sample is identical to that described in Section 3.1.
The sensor is subjected to a uniaxial dynamic stress which is gener-
ated by a shaker. The applied stress is a compression–compression
cycling with oscillation frequency of 100 Hz, as shown in Fig. 12.
It should be mentioned this low excitation frequency is consid-
ered to assure the accuracy of the Deybe model which is used in
the dynamic model. A voltage source, uin = 3 V, and a series resistor,
R0 = 560 , are used to bias the sensor. The dynamic response of the
sensor is measured via reading of the AC voltage developed in the
sensor.

The predicted response of the sensor is obtained by solving the
Eq. (22) with input force F(t) identical to that of experiments. The
Runge–Kutta method is used to numerically determine the solu-
tions for x(t) and the voltage drop in the sensor.

Fig. 13 shows the predicted displacement x(t) of the movable
electrode. The displacement curve contains two parts; a con-
stant displacement caused by the initial compression stress and
a fluctuating displacement created by the dynamic cycling. The
displacement profile precisely follows that of the applied stress.

Fig. 14 shows the predicted and experimental voltages drop
in the sensor. It is observed that the calculated voltage reason-
ably matches the experimental values. However, the model results
slightly overestimate the sensor voltage in particular at the peaks.
It is believed this difference in results is due to model assumptions.
The model ignores the effects of the applied load on the resistance
Ra. Furthermore, the model treats each CB aggregate as a continuum
phase of a spherical shape which is not true.

4. Conclusions

The electromechanical model developed in this work provides
physically valuable and compact means of analyzing a new class
of functional paint sensor. The model describes the paint sen-
sor as a resistance connected in series with parallel RC elements.
The impedance of the sensor possesses frequency independent
or dependent parameters depending on the considered model:
Debye or Cole–Cole equation. The electrical impedance expression
is beneficial for the estimation of the sensor electrical parame-
ters. The model formulation exploits the capacitance element in
the equivalent circuit to develop the electromechanical constitu-
tive equations; hence, the electromechanical coupling is similar to
the one used for electrostatic systems. The equivalent circuit anal-
ysis of the sensor system reveals nonlinear relationships between
the electrical and mechanical variables. The nonlinearity is caused
by the gap resistance. The sensor system equations offer straight-
forward relations between the mechanical excitation inputs (force,
velocity or displacement) and the electrical output signals (voltage
or current).

The experiments presented, in this work, demonstrate the valid-
ity of the proposed models for both the functional paint and the
sensor system. The results verify the validity and applicability of

the Debye and Cole–Cole equation to estimate the electrical param-
eters. Furthermore, the results show that the Debye equation can
reasonably mimic the paint sensor for frequency below 1 kHz as
shown in Fig. 7. The Cole–Cole model can predict the sensor behav-
ior for all frequencies although it is relatively arduous to work with
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Figs. 7–10). The experiments illustrate also the accuracy of the
iezoresistance model. Finally, the dynamic response is calculated
umerically and verified experimentally by examining the sensor
utputs under cyclic loading.

Future investigation should include optimization of the design
arameters and ingredients of the functional paint, and experimen-
al evaluation of the merits and limitations such as the band width
nd drift of the proposed paint. Among the important parameters
hat should also be considered are the properties of the epoxy resin,

ixing ratios of the different ingredients, powder particle sizes, the
uring parameters of the paint, the thickness of the paint layer, and
he spray parameters. The evaluation of the effect of these param-
ters on the performance of the sensor is a natural extension of the
resent work and is a subject to an extensive study.

It is envisioned that the theoretical and experimental techniques
resented in this paper will provide the foundation for developing
aint sensors for numerous applications ranging from monitor-

ng infrastructures, payload fairings of launching vehicles, flexible
pace structures, as well as many other critical structures that are
nly limited by our imagination.
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